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Abstract
The environment-dependent interaction potential is a transferable empirical
potential for carbon which is well suited for studying disordered systems.
Ab initio data are used to motivate and parametrize the functional form,
which includes environment-dependence in the pair and triple terms, and
a generalized aspherical coordination describing dihedral rotation and non-
bonded π -repulsion. Simulations of liquid carbon compare very favourably
with Car–Parrinello calculations, while amorphous networks generated by
liquid quench have properties superior to Tersoff, Brenner and orthogonal tight-
binding calculations. The efficiency of the method enables the first simulations
of tetrahedral amorphous carbon by deposition, and a new model for the
formation of diamond-like bonding is presented.

1. Introduction

First reported in 1991 [1], tetrahedral amorphous carbon (ta-C) is an amorphous diamond-
like material prepared by various apparatus such as filtered cathodic arc [2], mass-selected
ion beam [3], ion-assisted deposition [4] and magnetron sputtering [5]. The diamond-like
properties of ta-C arise from the tetrahedral (sp3) bonding which in crystalline form gives
diamond the highest hardness and thermal conductivity of any material and a bandgap of
5.1 eV. In the case of ta-C the sp3 fraction can be as high as 80–85%, leading to a structure
which is also extremely hard, is a weak p-type semiconductor with an optical gap of 2 eV and
has excellent wear-resistance. These properties have led to numerous applications in coating
technology, the most visible of which is the new generation of diamond-like blades.

The absence of crystalline order in ta-C leads to ambiguity in experimental
characterization, and thus atomistic simulation has an important role to play in the
determination of physical and electronic microstructure. Simulation studies are also crucial
to address questions of dynamics. The most significant mechanism to identify is the
deposition process responsible for the tetrahedral bonding, with a variety of theories proposed
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including subplantation (the dominant view) [6–8], the cylindrical thermal spike [9], atomic
peening [10] and compressive stress promotion [11]. Another important experimental result
not yet understood is how intrinsic compressive stress is annealed without reducing the sp3

fraction [12, 13].
The principal challenge in the simulation of ta-C is transferability, since the amorphous

network contains multiple hybridizations in highly strained environments which lie far from
the idealized arrangements of a molecule or crystal. The ta-C system thus provides a
stringent test of the quality of the interaction potential, and in many ways the study of ta-
C by simulation is a mutually beneficial exercise. In terms of transferability the preferred
techniques are those based upon density-functional theory (DFT), but accuracy is not the only
requirement, as the experimental process which forms ta-C is one of ion beam deposition,
whereby individual energetic ions arrive at a surface to build up a thin film in an atom-by-atom
manner. Simulations of this type require considerable numbers of atoms (∼103) and long
simulation times (∼106 steps), and thus are only feasible with less expensive techniques. The
challenge in modelling ta-C therefore is to find an interatomic potential capable of describing
highly strained interactions, while remaining sufficiently efficient to allow the study of large
systems and long times.

While many different levels of theory have been applied to ta-C, almost all fail to satisfy
the dual requirements of transferability and efficiency required to model the deposition process.
Instead, the most transferable methods have been applied in liquid-quench simulations which
neglect surface properties and formation mechanisms. Liquid-quench studies using DFT [14],
local basis density functional (LBDF) [15] and non-orthogonal tight-binding (NOTB) [16]
have all had considerable success in describing the nature of ta-C, and some of the key results
from these simulations are summarized in section 2. Less accurate methods such as orthogonal
tight-binding (OTB) [17, 18], and the empirical potentials of Tersoff [19], Brenner [20] and
Stillinger–Weber (SW) [21, 22], have provided a poor description of ta-C, but all attempts to
model thin-film deposition have used one of these simpler techniques, and these simulations
represent an important point of reference which is also reviewed in section 2. Another important
carbon simulation method is the environment-dependent OTB approach which introduces
coordination-dependent matrix elements [23], while an analytic approximation to the tight-
binding bond order potential (BOP) has been developed for hydrocarbons [24]. A further
variant of analytic BOP incorporating environment dependence has also been reported [25].

This article reviews and reports on a new carbon empirical potential [26] which for the
first time satisfies both the transferability and efficiency criteria. With this potential the first
simulations of ta-C thin-film deposition are made possible, providing a range of new insights.
Known as the environment-dependent interaction potential (EDIP), this new potential is based
upon a related EDIP functional form developed for silicon two years prior [27]. Silicon
EDIP was derived by the inversion of ab initio cohesive energy curves, providing much
improved transferability relative to other empirical potentials, and is the first empirical model
to realistically simulate quenching of amorphous silicon from the melt. The carbon form of
EDIP is a significant development, overcoming the most significant weakness of silicon EDIP,
namely the absence of π -bonding effects. With this improvement important phenomena such
as dihedral rotation penalties and π -repulsion are described. In parametrizing the carbon
EDIP an emphasis is also placed on transparency, with almost all parameters determined using
high-symmetry configurations to isolate functionality.

The functional form of carbon EDIP (subsequently referred to as EDIP) is reviewed in
section 3, and includes a particular emphasis on Hartree–Fock (HF) and DFT data used to
motivate the functional form and determine its parametrization. In section 4 the predictive
power of EDIP is demonstrated in simulations of liquid quenching and thin-film deposition.
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A high level of transferability is found in both the liquid and amorphous state, and the deposition
simulations reveal that the growth mode for ta-C is not as previously imagined. Section 5
considers future directions.

2. An overview of carbon simulations

The key ingredient in the experimental synthesis of ta-C is the energetic beam, with low- and
high-energy beams resulting in low-density amorphous carbon (a-C), but an optimal energy
window of 30–200 eV leads to the formation of ta-C with a typical density of 3.0 g cm−3.
The impact of each energetic ion generates a molten region (or thermal spike) which cools
rapidly due to the high thermal conductivity of dense carbon. Molecular dynamics simulations
of ta-C thus divide into two categories, either simulating many hundreds of individual
impacts to deposit a film, or considering only the process of melting and rapid cooling. The
following discussion presents some of the key results from these deposition and liquid-quench
simulations.

2.1. Liquid-quench simulations

Thermal spikes are a key concept in the study of ta-C, providing a post hoc justification
for the technique of liquid quenching in which a molten sample containing ∼100 atoms
is cooled to room temperature in ∼1 ps to form an amorphous solid. Liquid quenching
was for some time considered a computational device with little physical relevance, a 1997
analysis [28] demonstrated that the energetic beams used to deposit ta-C generate thermal
spikes of sub-picosecond duration and contain 50–100 atoms. Liquid quenching thus provides
a computationally expedient and physically reasonable method of simulating the bulk structure
of amorphous carbon networks.

The first liquid-quench simulations of ta-C were undertaken in 1993, with three groups
applying varying levels of theory. Stephan and Haase [29] applied the simplest approach, using
the Tersoff potential in simulations at 2, 2.5 and 3 g cm−3, and found sp3 fractions of 7, 16
and 34% respectively. Wang and Ho [30] performed OTB simulations, and observed a similar
underprediction at 3 g cm−3, finding just 33% sp3 sites and even a small number (2.3%) of
two-coordinate atoms. The first successful description of ta-C arrived with NOTB simulations
performed by the group of Frauenheim [31], who observed 53% sp3 bonding in a 3 g cm−3

systems of 64 atoms, and 64% sp3 bonding in later simulations using 128 atoms. At densities of
3.0 and 3.3 g cm−3 they found a π–π∗ gap of 3 eV. In 1994 LBDF calculations were performed
by Drabold et al [32] who simulated a 3 g cm−3 structure with an sp3 fraction of 85%. They
also observed that the sp2 atoms paired up, and found a defect-free gap 2 eV in width.

Car–Parrinello molecular dynamics (CPMD) [33] calculations of ta-C were first presented
in 1996 by Marks et al [34] who reported a 64-atom 2.9 g cm−3 structure containing
65% sp3 bonding. These simulations observed three- and four-membered rings in the ta-C
network, with the former particularly unexpected having not been observed in the tight-binding
simulations. Support for the small rings came from several sources including Car–Parrinello
(CP) simulations by Crain et al [35] and a fingerprint peak for four-membered rings in neutron
diffraction data [34]. Annealing of the 3.0 g cm−3 LBDF structure using CP simulation saw
the appearance of a three-membered ring and a drop in sp3 fraction to 70% [36], while more
recent 125-atom CPMD simulations by McCulloch et al [37] found that three- and four-
membered rings were present at four different densities between 2.0 and 3.2 g cm−3. Shultz
et al [38] also considered hypothetical crystal structures in which each atom was situated
in a ring of length three or four, and showed that the strain energy was not excessive. The
same authors also showed that minimal basis sets and approximate Hamiltonians discriminate
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Figure 1. The sp3 fraction plotted as a function of density. Filled symbols indicate the CPMD,
NOTB and Brenner results from [39] calculated using identical preparation conditions. Open circles
are experimental results from argon/carbon magnetron-sputtered amorphous carbon [5]. Open
squares are experimental values from ion-beam-deposited amorphous carbon [2]. Open triangles
indicate the OTB calculations of Wang and Ho [30]. Simulations using the Tersoff potential overlay
the OTB data almost exactly [29].

against three-membered rings, thus explaining their observation only in CP simulations with
large plane-wave cutoffs.

Direct comparison of the transferability of the various methods applied to ta-C has been
clouded by the use of different system sizes, quench rates and definitions of coordination. To
resolve this uncertainty a recent comparison of methods was performed [39] in which 125-
atom amorphous carbon structures were generated by liquid quench at different densities using
preparation conditions as identical as possible. Figure 1 shows the variation in the sp3 fraction
with density, indicating a good correlation between the level of theory and agreement with
experiment. In particular, it is apparent that the less computationally expensive methods of
OTB and the Tersoff and Brenner potentials are unsuitable for describing the high density of
ta-C. However, with regard to the simulation of thin-film deposition, these are the only methods
of figure 1 for which the calculations are practical.

2.2. Deposition simulations

The first simulations of carbon deposition used the Tersoff potential and were performed by
Kaukonen and Niemenen in 1992 [40]. The calculations followed the full motion of only the
ten fastest moving atoms, and in these approximate simulations a maximum sp3 fraction of
44% was found for films grown with a 40 eV beam. In 1996 Marks et al [21] simulated the
growth of two-dimensional carbon films using a graphitic SW potential and in agreement with
experiment found a maximum in the compressive stress as a function of the incident ion energy.
Another approximate study of carbon deposition by Uhlmann et al [41] used NOTB to follow
the impact of a small number of energetic ions (∼20) onto an amorphous carbon surface
generated by liquid quenching. These studies provided the first tight-binding insight into
carbon impact process and found that subplantation processes absent in the two-dimensional
SW simulations are present in three dimensions.
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Figure 2. Pair correlation function g(r) from film deposition simulations using the Tersoff [43],
modified Brenner [43] and truncated OTB methods [44]. Deposition energies were 40, 40 and
100 eV respectively.

The first true three-dimensional simulations of thin-film carbon deposition did not appear
until 2000 when Tersoff, Brenner and OTB simulations were performed. Kaukonen and
Niemenen [42] performed new simulations using the Tersoff potential, and found thin-film
structures with sp3 bonding fractions no greater than 29%, in poor agreement with experiment,
but consistent with the liquid-quench calculations of Stephan and Haase [29]. The highest
density (3.03 g cm−3) was observed for films deposited with 40 and 100 eV atoms, but these
structures contained just 26 and 24% sp3 bonding respectively. Jäger and Albe [43] deposited
carbon films using the Tersoff and Brenner potentials and found 3 g cm−3 structures with sp3

fractions of 34 and 3% respectively. Further simulations incorporating ad hoc modifications
to the cutoff function of the Brenner potential led to structures with 85% sp3 bonding at the
expense of an unphysical spike in the radial distribution function (RDF) as shown in figure 2.
The Tersoff simulations of [43] show a similar spike, indicating an significant accumulation of
atoms which is unphysical and inconsistent with experiment. Fagan et al [44] deposited a film
using OTB with an incident ion energy of 100 eV, and for reasons of computational efficiency
the interaction was splined to zero at 2.0 Å. As for the modified Brenner potential, a substantial
spike in the RDF is observed at the cutoff distance. Furthermore, the sp3 fraction of the OTB
film was just 20%, even though the film density was 3.4 g cm−3. While not a simulation of
ta-C, the OTB simulations of low-density carbon by Kohary and Kugler [45] are notable as the
first successful tight-binding simulations of carbon thin-film growth.

The inconsistency between density and sp3 fraction is a characteristic of potentials which
do not properly describe non-bonded π -repulsion. This shortcoming is most apparent for
graphite, where neglecting the repulsion between non-bonded sp2 sites leads to a representation
of graphite with a density approaching (or even exceeding) the diamond density of 3.5 g cm−3,
whereas in fact the true density of graphite is 2.27 g cm−3 due to the spacing of 3.35 Å
between sheets. The origin of the high-density, low-sp3 behaviour in these simulations is thus
attributable to the short range of the interaction, where the location of cutoff is identified by
the sharp leading edge of the spikes in figure 2. This second deficiency reflects the ad hoc
description of the interaction cutoff itself. Two of the defining characteristics of EDIP are
its treatment of non-bonded π -repulsion and the DFT-derived coordination cutoff, and these
properties give EDIP excellent transferability as seen in section 4.

3. The environment-dependent interaction potential—EDIP

The functional form of EDIP consists of three components: a two-body pair energy, a three-
body angular penalty and a generalized coordination. Within this framework the total energy
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is written as a sum of on-site energies Ui given by

Ui =
∑
j

U2(rij , Zi) +
∑
j<k

U3(rij , rik, θjik, Zi) (1)

where i is the on-site species, and j and k are neighbours. The coordinationZi has in general a
fractional value and consists of two components, a spherical contribution zi as found in silicon
EDIP, and an aspherical term unique to the carbon potential which is vital for describing
distorted configurations involving π -electrons. In highly symmetric configurations as found
in graphite, diamond and linear chains the aspherical term vanishes, the spherical term counts
precisely the number of nearest neighbours and the coordination then assumes its intuitive
integer value.

3.1. Pair interaction

The pair potential U2 resembles the SW potential [46] in being short ranged, decaying to zero
at a distance set by the denominator in the exponential term. For distances smaller than this
cutoff the functional form is

U2(r, Z) = ε
[(
B

r

)4

− e−βZ2

]
exp

(
σ

r − a − a′Z

)
. (2)

The exponential term in −βZ2 describes the bond-order and is one of the key innovations in
the silicon EDIP functional form. This term moderates the balance between attraction and
repulsion as originally proposed by Abell [47], and as implemented in the Tersoff and Brenner
potentials. The difference in the case of EDIP is that the form of the bond-order term is derived
using the method of inverting ab initio cohesive energy curves, and this theoretical grounding
is one of the principal sources of transferability in the EDIP pair potential.

The variable cutoff controlled by the parameter a′ is absent in silicon EDIP, and plays
an important role in the description of carbon. The requirement for a variable cutoff was
deduced from HF cluster data used for the parametrization of the pair potential. The HF
calculations for sp2- and sp3-bonded carbon were performed separately by Bensan [21] and
Mahon [22] in order to parametrize SW potentials for graphite (SW3) and diamond (SW4)
respectively. It was noted by Bensan that the two pair potentials reduce to a common form
when rescaled by the bond-strength and bond-length, and thus it follows a′ should be non-zero
and positive, indicating an interaction cutoff increasing with coordination according to the
fractional difference between the nearest neighbours in diamond and graphite.

The generality suggested by the common reduced SW form was exploited in a rescaling of
the HF data using experimental cohesive energies and bond-lengths (graphite, U0 = 7.37 eV
and R0 = 1.421 Å; diamond, U0 = 7.35 eV and R0 = 1.547 Å). This hybrid data set for
parametrization contains the best of both data sources, with the correct distances and energies
from experiment, and an appropriate functional shape and curvature from SW/HF. Figure 3
shows that EDIP fits these scaled HF data extremely well, and also demonstrates the necessity of
the variable interaction range. Without the term in a′ the intersection between the HF data sets at
1.75 Å forces a poor fit to the equilibrium regions, distorting the density and elastic constants of
both phases. Further to this mechanical motivation of a′, the lengthening of the interaction with
Z as seen in figure 3 is intuitively reasonable as high-coordination phases exhibit increasingly
delocalized interactions compared with their short-ranged covalent counterparts.

A comparison with the fixed coordination SW3 and SW4 potentials illustrates a useful
interpolation property of the EDIP pair potential. When the parameters β and a′ are set to zero,
equation (2) reduces to the identical function form of the two SW potentials, thus the situation
exists thatU2(r, 3) andU2(r, 4) are equivalent to the pair terms of SW3 and SW4 respectively.
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Figure 3. EDIP two-body pair energy for graphite (Z = 3) and diamond (Z = 4) compared with
the scaled ab initio data used for the parametrization. Show also are the predictions for carbon in
the form of a linear chain (Z = 2) and simple cubic structure (Z = 6).

Table 1. Quantifying the transferability of EDIP to symmetric structures outside the
parametrization. Comparisons are shown with Tersoff [19], OTB [30], LDA/GGA [23] and
experimental data [48]. Note that EDIP reproduces the experimental diamond and graphite bond
lengths and bond energies by construction as described in the text.

r0 (Å) ε0 (eV/bond) ω (cm−1)

Dimer EDIP 1.24 −5.2 1914
(Z = 1) Expt 1.24 −6.3 1856

Tersoff 1.44 −5.0
OTB 1.41

Linear chain EDIP 1.32 −5.6
(Z = 2) LDA/GGA 1.29 −6.1

Simple cubic EDIP 1.89 −1.3
(Z = 6) LDA/GGA 1.76 −1.4

The EDIP functional form thus provides a means to interpolate between the two HF statepoints,
suggestive of considerable applicability in amorphous and liquid systems where coordination
states are often non-integer. Outside this range the extrapolation properties of the pair potential
are also remarkably good. Table 1 shows that despite being fitted to coordinations three and
four, EDIP also proves to have useful transferability to the dimer, linear chain and simple cubic
structures. With decreasing coordination the qualitative trends are as expected, with stronger
and shorter bonds with decreasing coordination. The only exception is the dimer bond energy,
and even for this almost pathological case the properties are far better than other empirical
potentials, with the vibrational frequency and bond length agreeing closely with experiment.
A significant component of this transferability can be attributed to the bond-order term in
the pair potential, confirming the generality of silicon EDIP. A caveat should be added to the
simple cubic structure which shows the ideal bond energy when Z = 6 identically. When
a generalized coordination Zi is computed (as section 3.3), Z assumes a value less than six,
altering the pair and triple energies and leading to values of r0 = 1.96 Å and ε0 = −1.6 eV.

3.2. Triple interaction

The three-body term follows silicon EDIP in using SW-like radial and angular terms with
environmental dependence, but the functional form adopted here is somewhat different to
enable direct contact with ab initio data and the SW3 and SW4 potentials. The three-body
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term is thus written as a product of separable terms in the manner

U3(rij , rik, θ, Z) = λ(Z)g(rij , Z)g(rik, Z)h(θ, Z) (3)

where the energy penalty vanishes for distances rij and rik greater than the pair interaction
cutoff of a + a′Z. The three components of U3 are defined by

λ(Z) = λ0 exp[−λ′(Z − Z0)
2] (4)

g(r, Z) = γ ′ exp[γ /(r − a − a′Z)] (5)

h(θ, Z) = 1

q
{1 − exp[−q(cos θ + τ(Z))2]} (6)

where τ(Z) ≡ − cos θ0 describes the variation in ideal bonding angle, following the SW
philosophy of an ideal angle θ0 for which there is no angular penalty. With ideal angles of
180◦, 120◦, 109.5◦ and 90◦ for coordinations two, three, four and six respectively, τ(Z) is
an interpolation function connecting the statepoints τ(2) = 1, τ(3) = 1/2, τ(4) = 1/3 and
τ(6) = 0.

The leading term in U3 is the magnitude function λ(Z) which controls the strength of the
three-body interactions. The SW/HF data provide values of λ(3) = 71 eV and λ(4) = 76 eV,
while additional NOTB calculations of a bent linear chain yielded a value of λ(2) = 35 eV. The
Gaussian form of λ(Z) (suggested by Bazant [49]) captures the small value of λ(2) relative to
graphite and diamond, as well as the expected trend of U3 → 0 for large Z due to diminishing
angular importance in metallic systems.

The middle terms inU3 are the radial functions of equation (5), and as for the pair potential
the cutoff in exponential denominator is generalized to include a variable range. It is important
that the pair and radial functions terminate identically, as spikes in the RDF can arise if different
cutoffs are used for the two distance-based functions. The second reason for including a′ is
that SW3 and SW4 potentials themselves have radial functions with different cutoffs, and for
both coordinations the individual potentials are well fitted by the general EDIP form. Note
however, that the radial component data SW/HF is extracted from the HF-parametrized SW
potentials, and is not computed directly by HF as for the pair potential.

The final term in U3 is the angular term h(θ, Z) capturing the energy cost of distortions
away from the ideal angle θ0. In the limit q → 0 this expression reduces to

h0(θ, Z) = [cos θ + τ(Z)]2 (7)

which for τ(4) = 1/3 corresponds exactly to the original SW angular form proposed for
tetrahedrally bonded silicon [46]. For finite q the angular factor h0(θ, Z) still applies for small
deviations from the ideal angle, and this important property allows contact between the SW3
and SW4 triple potentials for the case of U3(rij , rik, θ, 3) and U4(rij , rik, θ, 3) respectively.
The importance of angular softening was identified during the development of silicon EDIP, as
without a reduction in angular stiffness for large distortions the liquid state is poorly described.
In the case of the Tersoff potential (where there is no angular softening) the melting point of
carbon is almost 50% greater than the experimental value [19].

To determine the value of q for EDIP, molecular dynamics simulations of a 2.9 g cm−3

liquid were compared with CPMD data at the same density [34]. Note that this was necessarily
the final EDIP parameter to be determined. The upper panel of figure 4 shows the equilibrium
temperature attained when simple cubic carbon spontaneously collapses and forms a liquid.
This temperature of melting reflects the potential energy difference between the simple cubic
and liquid states, and is sensitive to angular forces, varying by a factor of two over the range
considered. Agreement with the CMPD value of ≈6000 K is seen to be attained for q = 3.5.
Once the liquid was equilibrated, each sample was rescaled to 5000 K and the diffusion constant
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Figure 4. Properties of 2.9 g cm−3 liquid carbon computed with EDIP as a function of the angular
softening parameter q compared with CPMD calculations [34]. Upper panel: plateau temperature
of the liquid following the spontaneous melting of a simple cubic lattice. Lower panel: diffusion
constant for liquid carbon at 5000 K. The solid curves are a fit to guide the eye.

Table 2. Elastic constants of diamond and a graphite sheet, in units of GPa. The computed graphite
values presume a c-spacing of 3.35 Å. The OTB values are from Xu et al [18].

Expt EDIP OTB

Diamond: B 442 418 456
c11 − c12 951 958 622
c44 576 472 475

Graphite: c11 + c12 1232 1233
c11 − c12 880 849 840

was computed for a period of 1 ps. The lower panel indicates there is again a strong dependence
on q and agreement with the ab initio data is found when q = 3.5. The confirmation of
the value of q by this second and independent property gives confidence that a softening of
angular properties is an appropriate modification to equation (7). Furthermore, the value of
q determined by figure 4 describes angular softening very similar to silicon EDIP, illustrating
the cross-elemental transferability of the generic EDIP form.

The coordination is exactly three and four for graphite and diamond, and thus U2 and
U3 determine their elastic constants. Table 2 shows the properties of EDIP compare very
favourably with experiment, and in the case of c11 − c12 for diamond the EDIP prediction is
considerably better than OTB. The good performance of EDIP arises from the environment
dependence in τ(Z) which is absent in OTB where a fixed value of the parameter pσ is used.
There are theoretical reasons why pσ = 3 is the most appropriate for describing the elastic
properties of tetrahedral semiconductors [50], and since τ(4) corresponds to pσ = 3 the
behaviour of table 2 follows.

3.3. Coordination counting

The spherical coordination contribution zi is a function of distance alone, and is determined by
the sum zi = ∑

f (rij ), where f (r) is a three-parameter function which is unity for r < flow,
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zero for r > fhigh and between these limits varies continuously according to the expression

f (r) = exp

(
α

1 − x−3

)
(8)

where x = (r − flow)/(fhigh − flow). In the silicon form of EDIP the coordination Zi consists
solely of a term with this form, with flow and fhigh chosen intermediate between the first- and
second-neighbour distances of the diamond structure. A similar approach is used in the Tersoff
and Brenner methods for carbon where the bond-order function is cut off in the vicinity of
2 Å over a range of ≈0.2 Å in width. The differentiating factor for carbon EDIP is that the
coordination term (equivalent to a bond-order via τ(Z) and the term in −βZ2) is determined by
an implicit fit to ab initio data which overcomes unphysical dependences on cutoff parameters
such as seen in figure 2.

The second important factor in the coordination term of carbon EDIP is the aspherical term
applying for sites with Z < 4 which exhibit π -like bonding. The aspects of π -bonding most
important to ta-C are the dihedral rotation term (which promotes a locally planar structure),
and the non-bonded π -repulsion term, which fixes the equilibrium spacing of graphite and
thus prevents the collapse of planar sp2 units into an artificially dense state. These two
mechanisms are necessarily aspherical as they reflect the planar symmetry of graphite and
the linear symmetry of sp-bonding, and are included in the generalized coordination Zi in the
manner

Zi = zi + π3(zi)X
dih
i + π3(zi)X

rep3
i + π2(zi)X

rep2
i (9)

where π2 and π3 are switching functions identifying two and three-coordinated atoms, and
the Xi describe dihedral rotation, π -repulsion at a threefold site and π -repulsion at a twofold
site. The functions Xi are zero in the crystalline state, and non-negative otherwise, and thus
low-symmetry configurations are penalized with an increased coordination corresponding to
a reduction in π character. The coordination increment is described by vector products which
capture the appropriate symmetries via the functions

Xdih
i = Zdih

∑
π3(zj )(R̂jm · R̂ik × R̂il)

2Cdih
ijklm (10)

X
rep3
i = Zrep

∑
π(zj )(R̂ij · R̂ik × R̂il)

2C
rep3
ijkl (11)

X
rep2
i = Zrep

∑
π(zj )[1 − (R̂ij · R̂ik)

2]Crep2
ijk (12)

where the jkl are neighbours of i,m is a neighbour of j and π(z) selects for two- or threefold
sites. To avoid various unwanted first- and second-neighbour interactions the Xi include the
distance-based cutoff functions C given by

Cdih
ijklm = p(Rij )p(Rik)p(Ril)p(Rjm) (13)

C
rep3
ijkl = (Rij − c0)

2[1 − p(Rij )]p(Rik)p(Ril) (14)

C
rep2
ijk = (Rij − c0)

2[1 − p(Rij )]p(Rik) (15)

with the function p(r) equivalent to f (r) except for different end-points plow and phigh. Both
repulsive cutoffs are identically zero for Rij > c0, and thus c0 represents the c-spacing of
graphite. The two switching functions πx(z) are polynomials of the form [(z − x)2 − 1]2 for
|z − x| < 1 and zero otherwise, while the third switching function π(z) is equal to π3(z) for
z > 3 and unity elsewhere.

The HF data were used to determine Zdih, while the remaining seven parameters were
derived from static DFT calculations describing the continuous transformation between
diamond and rhombohedral graphite [51]. These data are very useful as they implicitly describe
fractional coordination in a range of structures where all atoms are equivalent by symmetry to
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stick fragment illustrates the symmetry shared by all atoms during the transformation. The DFT
data are taken from [51], while the points Z/DFT are inferred as described in the text. Energies are
per atom.

atom i indicated in figure 5. The DFT reaction path was determined by minimizing the total
energy with respect to the in-plane distanceB and the inter-planar angle θ for various values of
R, and the white squares in figure 5 indicate the energy barrier for the transformation. To make
use of these data in the parametrization of EDIP an auxiliary data set Z/DFT is constructed by
requiring that the pair and triple potentials together with a numerically determined coordination
Z′ reproduce the DFT energy barrier. This amounts to solving the implicit equation

'UEDIP(R,Bmin, θmin, Z
′) = 'UDFT(R) (16)

where Z′ is the fractional coordination between three and four, and Bmin and θmin minimize
'UEDIP and are functions of R and Z′. Equation (16) is effectively a postulate that the
intermediate electronic states can be described by a single quantity, the coordination Z′(R),
and comparison of the derived values of Bmin(R,Z

′) and θmin(R,Z
′) with DFT confirms the

validity of this hypothesis. It is thus possible to extract an effective fractional coordination
from DFT, enabling an essentially unambiguous parametrization of the EDIP coordination
component. The most crucial aspect of the Z/DFT data is the sharp change in slope near
R = 2.1 Å, which partitions the fractional coordination into distinct regimes and greatly
simplifies the process of parametrization.

For R < 2.1 Å the structure is diamond-like, and the energy barrier is dominated by
a σ -bond stretch of the interplanar distance. The dominant term in equation (9) is then the
spherical coordination term, and thus the parameters of f (r) can be determined by fitting
to the R < 2.1 Å data. This aspect sets EDIP apart from traditional analytic potentials
when an arbitrary choice of cutoff parameters leads to a poor description of bond breaking,
and unphysical spikes as in figure 2.

The region R > 2.1 Å corresponds to the graphite-like region in which the non-bonded
π -orbitals are forced to have increasing overlap as the sheets are brought together. In this region
the dominant contribution to the generalized coordination comes from the aspherical terms,
principally the sp2 π -repulsion termXrep3. The repulsion for sp sites makes no contribution due
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Table 3. Parameters of EDIP as fitted to the ab initio data. Note that γ ′ is a fictitious parameter as
it does not represent a degree of freedom, since it multiples λ0 as in [26].

Two-body ε = 20.09 eV B = 0.9538 Å β = 0.0490
σ = 1.257 Å a = 1.892 Å a′ = 0.170 Å

Three-body λ0 = 79.34 eV λ′ = 0.30 Z0 = 3.615
γ = 1.354 Å γ ′ = 0.936 q = 3.5

Coordination flow = 1.547 Å fhigh = 2.27 Å α = 1.544
plow = 1.481 Å phigh = 2.0 Å
Zdih = 0.30 Zrep = 0.06 c0 = 3.2 Å

to the selection rule in π2(zi), while Xdih vanishes due to the symmetry of the vector product.
The π -repulsion region is thus described by two quantities, the graphite spacing c0 and the
coordination coefficient Zrep. The value of c0 = 3.2 Å is taken from the DFT calculations to
ensure a consistent parametrization, but the actual experimental graphite spacing is 3.35 Å,
and so the density of EDIP graphite is too high by 4%. The value of Zrep is thus uniquely
determined and the agreement between EDIP and Z/DFT is quite good as seen in figure 5.

The remaining two coordination parameters of the generalized coordination describe the
neighbour selection function for π -bonds. Since plow describes the maximum length of a bond
showing full π -character, its value will lie somewhere between 1.421 and 1.547 Å, and so
the midpoint value is used. In the case of phigh which describes the terminating point for a
fully broken π -bond, a value of 2.0 Å was chosen as this is less than fhigh and lies close to
the peak in the activation barrier. The final component of the generalized coordination is the
repulsion increment for a twofold site described by equation (12). This introduces no additional
parameters, and serves to prevent chain structures forming with artificially high densities.

The parameter set of EDIP listed in table 3 is thus almost entirely deterministic, with HF
and DFT data contributing to the functional form and its parametrization. Execution time is
necessarily considerably longer than for silicon EDIP due to the long range of the π -repulsion
terms, but EDIP remains orders of magnitude faster than tight-binding and DFT methods.

4. Applications of EDIP

While static and crystalline structures are necessarily the starting point when developing an
empirical potential, a more stringent test of transferability is found in the description of
disordered and dynamical systems. The following sections present applications of EDIP
to liquid quenching and thin-film deposition, and where comparison is possible, excellent
agreement with experimental and CPMD data is found. This ability to describe disordered
carbon gives confidence in new theories and insights which are developed from the simulations.

4.1. Properties of the liquid state

The first step in a liquid-quench simulation is the generation of the molten sample, and
figure 4 showed earlier how an appropriate value of the angular softening parameter q
led to excellent reproduction of the CPMD data. To determine the accuracy of EDIP for
liquid properties outside the parametrization, simulations of molten carbon were performed
at 2.0, 2.6, 2.9 and 3.2 g cm−3. Each simulation contained 125 atoms, periodic boundary
conditions were used within an NVE ensemble, and the coordination was measured by
counting neighbours within 1.85 Å. The liquid structures were generated from a slightly
randomized simple cubic lattice which avoids superheating and nucleation issues due to a
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Figure 6. Pair distribution function g(r) for 2.9 g cm−3 liquid carbon at 5000 K computed using
EDIP and CPMD [52].

destabilizing imaginary phonon mode for tetragonal distortions [38]. With this method the
liquid state is attained very quickly (∼50 fs) and thermal averaging at 5000 K for 0.5 ps yields
good equilibrium properties.

Figure 6 compares the distribution of distances in the 2.9 g cm−3 EDIP simulations with
CPMD data at the same density [52], and the overall agreement is very good, reproducing the
relative heights of the first and second neighbours, as well as the finite number of distances near
2 Å. Simulations at 2.0 g cm−3 find EDIP g(r) again in agreement with CPMD simulations [53],
while Tersoff simulations of liquid carbon [19] are qualitatively different as revealed by a
decay to zero in the RDF at 2 Å. In figure 6 the small offset of 0.05 Å in the position of
the first-neighbour peak can be largely attributed to the coordinated-based formalism which
implicitly ascribes to each site a fixed π -conjugation according to the number of neighbours.
Consequently, for structural units such as an sp2 dimer, EDIP will treat both threefold sites
as having π -conjugations appropriate for graphite and will therefore overestimate the bond
length. A similar effect occurs for twofold-coordinated sites which cannot form triple bonds
with length ≈1.20 Å, instead favouring double-bond distances as in table 1.

Figure 7 compares the bond-angle distributions for three- and four-coordinated atoms in
the 2.9 g cm−3 liquid, and as for the distances in figure 6, the agreement is remarkably good,
confirming that the transferability observed in the crystalline state extends to non-equilibrium
situations. The only difference of note between the angular distributions is the small peak near
60◦ for four-coordinate atoms. This peak reflects the presence of three-membered rings in the
CPMD liquid which are disfavoured in EDIP because the angular penalty function imposes an
energy cost approximately twice the strain energy [39]. Tight-binding methods also describe
these small rings poorly, and a comprehensive study of small rings by Shultz and Stechel [54]
shows that a minimal basis set and restrictive functional form each lead to an overestimation
of strain energy for the three-membered ring.

The liquid coordination fractions are a further test for EDIP due to the unusual property
of carbon that the liquid has a lower coordination than the solid. This is in contrast to
other group IV elements where the converse is the rule, such as for silicon where the liquid
coordination is ≈6.4. Figure 8 compares the average coordination fraction of the EDIP and
CPMD liquids as a function of density, and shows excellent agreement. The time-varying
character of the coordination is also well described by EDIP, showing instantaneous fluctuations
very similar to those observed by CPMD [53,55]. The 2.0 g cm−3 CPMD simulations defined
the coordination cutoff using the first minimum in the RDF, which is slightly larger than the
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Figure 8. Coordination fractions of the liquid state computed with EDIP simulations and compared
with CPMD calculations at 2.0 g cm−3 [53], 2.6 g cm−3 [37] and 2.9 g cm−3 [52]. All data analysis
used a bonding cutoff of 1.85 Å, except for the 2.0 g cm−3 CPMD simulation which used a larger
value (≈2 Å), thus favouring higher sp3 fractions and smaller sp fractions.

EDIP coordination cutoff. Application of an identical cutoff would reduce the CPMD sp3

fraction and increase the sp fraction, thereby bringing EDIP into even closer agreement.
The density dependence of the diffusion constant measures transferability away from the

parametrization of figure 4. EDIP calculations at 2.0 g cm−3 and 5000 K found a diffusion
constant of 2.0 Å2 ps−1, which compares very favourably with the value 2.4 Å2 ps−1 reported
from CPMD [53]. Further agreement is found in the generation of the 2.9 g cm−3 liquid,
where the time required to collapse the unstable simple cubic lattice was 0.02–0.025 ps for
both EDIP and CPMD, indicative of a similar reaction path for the transformation. Overall, the
correspondence between EDIP and CPMD is quite substantial, indicating that EDIP provides
a useful description of liquid carbon.
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4.2. Liquid quenching

With ab initio methods the procedure of liquid quenching is sufficiently burdensome that only
a small number of calculations can be carried out at each density. With EDIP however a single
quench takes of order 15 min, and so a great many quenches can be performed to evaluate
properties such as statistical variability, an important effect considered recently for the first
time [39]. In this evaluation of liquid quench statistics, a large number of quench calculations
were performed using EDIP at 2.9 g cm−3. Batches of 100 simulations were undertaken, with
each quench in the batch using a slightly different configuration for the equilibrated liquid. This
was achieved by saving the liquid statepoint prior to each cooling cycle, and then allowing the
liquid to evolve for 0.1 ps prior to the subsequent quench. Systems with 64 and 125 atoms were
cooled exponentially over a time t0 = 0.5 ps, while a third simulation set contained 125 atoms
and was linearly cooled with t0 = 2.5 ps. These three systems are generally representative of
liquid-quench calculations in the amorphous carbon literature.

Figure 9 indicates the sp3 fractions of the equilibrated structures for the two 125-atom
scenarios. The average value is just under 50%, in essentially exact agreement with NOTB
and slightly less than CPMD. Of even greater significance however is the extent of the
statistical variation which had not been previously discussed or measured, and represents
an important factor to consider when comparing different preparation conditions and methods.
The variability arises from fluctuations in the liquid state at the instant the quench is initiated,
as well as the metastable nature of the rapidly quenched structures. Both of these factors are
also present in the experimental deposition process, and thus the variability is not an artifact
of the simulation technique.

System size is not a key factor determining the sp3 fraction, as the 64- and 125-atom
simulations cooled in 0.5 ps were found to have very similar distributions. The cooling rate
however does make a difference to the observed sp3 fractions. Not only is the distribution of
sp3 values much narrower with the longer cooling, but the mean is reduced with a difference of
1.8–3.2 at the 95% confidence interval. This result helps interpret a number of DFT simulations
examining the effect of the cooling rate. In three 64-atom simulations at 2.9 g cm−3, Marks
et al [52] found that the sp3 fraction decreased from 68 through 65 to 57% as the quenching time
increased, while further 64-atom simulations at 2.9 g cm−3 [56] with in principle the same
preparation conditions as the 65% sp3 sample found an sp3 fraction of ≈55%. In contrast
to [52], 125-atom DFT simulations at 3.2 g cm−3 [37] observed no cooling rate effect, finding
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Figure 10. Proportion of two- and four-coordinated sites in networks generated using EDIP and
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sp3 fractions of 80.1 and 80.3 for t0 = 0.5 and 1.0 ps respectively. These disparate results can
now be understood in the context of the statistical variability evident in figure 9. All of the
DFT results lie within the statistical range found using EDIP, and while a cooling rate effect
is present, it is not nearly as pronounced as presumed in [52].

As might be anticipated from the sp3 data, many other quantities in the quench exhibit
significant statistical variation. Nearest-neighbour distances, bond angles and ring statistics are
important quantities when comparing amorphous networks, and their variation is non-trivial
as discussed in [39]. Averaging over multiple quenches is therefore a useful tool for reducing
statistical scatter when comparing different levels of theory and preparation conditions. With
this principle in mind, multiple EDIP quenches were performed at other densities to evaluate
the dependence of coordination on density as in figure 1. Using the liquid networks considered
earlier, a minimum of 25 quench simulations were performed at each density, using exponential
cooling with t0 = 0.5 ps following by 1 ps of equilibration at 300 K. Figure 10 shows that the
coordination fractions of the EDIP structures compare very favourably with those of CPMD.
The square and triangular symbols indicate the extent to which the Brenner, Tersoff and OTB
methods underestimate the sp3 fraction in ta-C. In this respect only higher levels of theory such
as NOTB and LBDF have better predictive power than EDIP.

Much of the good behaviour of EDIP seen in figure 10 can be traced to the π -repulsion
term which gives EDIP graphite its realistic density. Jäger and Albe [43] suggested that
the poor description of ta-C with the Brenner and Tersoff potentials might be related to the
‘compressed graphite’ predicted by both potentials, whereby the short range of the interaction
results in a graphitic density similar to that of diamond. This hypothesis is confirmed by EDIP
simulations with Zrep set to zero, which show sp3 fractions very similar to those of OTB and
Tersoff. This explains why the Brenner, Tersoff and OTB simulations, none of which have
realistic π -repulsion terms, have not been successful in the simulation of ta-C.

Figure 11 shows that across all four densities the distributions of distances in the
EDIP networks are in substantial agreement with CPMD structures generated under identical
conditions. In particular there are no metastable states in the G(r) intermediate between
the first- and second-neighbour distances as found for the Brenner potential in [39] and in
figure 2. A minor difference between EDIP and CPMD is observed around 1.3 Å, where the
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treatment of π -conjugation discussed earlier results in an absence of short distances associated
with ethylenic-like double bonds. A comparison of bond-angle distributions for 2.9 g cm−3

structures in [26] shows for three- and fourfold coordinated sites the agreement between EDIP
and CPMD is good, particularly for the sp2 atoms. For the sp3 atoms the EDIP distribution is
slightly narrower (similar to the liquid as in figure 7), while the positions of the maxima are
virtually identical.

Ring statistics for all four networks were computed using the shortest path algorithm of
Franzblau [57] and are compared with CPMD in figure 12. Multiple-quench averaging is
applied for the EDIP data, but this is not possible for CPMD due to the computational cost
involved. The effect of averaging is apparent in the smooth variation of the EDIP data compared
with the wide scatter for CPMD. Overall, the two methods predict structures with similar ring
distributions, and the presence of agreement for rings with as many as 12 atoms confirms that
the EDIP and CPMD networks have considerable topological similarity. The most significant
difference between EDIP and CPMD is the near-absence of three- and four-membered rings.
The three-membered rings are penalized for energetic reasons as discussed earlier, while a
similar argument applies for four-membered rings. The absence of the four-membered rings
can also be deduced from figure 11 where the small discrepancy around 2.1 Å arises from the
lack of diagonal distances across the carbon quadrilaterals.

One structural difference revealed upon visual inspection of the EDIP networks is the
presence of isolated sp2 atoms. These sites are not unexpected as there is no aspect of
the potential which discourages their formation. The presence of these atoms relates to
the simplified treatment of conjugation, and results in electronic states at the Fermi level as
discussed in [26]. While these details are not insignificant, from a broader structural perspective
they are less important than the more general properties which are correctly described such
as the distance and angle distribution functions, ring statistics and the dependence of the sp3

fraction on density. Thus with the liquid and amorphous states well described structurally it can
be expected that EDIP will prove capable of describing energetic impact and film deposition.
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4.3. Thin-film deposition

Although EDIP is much more efficient than tight-binding methods, the computational cost
of modelling deposition remains non-trivial. The simulation of a 40 eV impact lasting 1 ps
consumes approximately one hour of CPU time on a workstation, and thus the deposition of a
film containing 500 atoms requires several weeks of calculation. Four films were grown using
monoenergetic beams with energies of 1, 10, 40 and 100 eV, and each film was deposited
onto a room-temperature (001) diamond substrate with (2 × 1) reconstructed upper and lower
surfaces. Periodic boundary conditions were applied in the x- and y-directions, each with a
side length of 14.22 Å, and for each energy the 500 atoms are deposited individually onto the
upper surface with normal incidence and random position in the xy-plane.

The impact of an energetic species leads to substantial heating of the substrate and
film, and thus velocity rescaling wall thermostats of thickness 2 Å acted upon atoms with
a lateral displacement greater than 6.11 Å from the initial position of the incident atom. These
thermostats prevent recycling of energy through the boundaries, and a similar thermostat
applied to the substrate base removes heat which also diffuses away in an infinite system. The
motion of all atoms was followed for between 0.5 and 1 ps, and rethermalization to 300 K
was carried out prior to deposition of the subsequent atom. This scheme approximates the
experimental situation where the time between successive impacts is of order a millisecond, and
specifically excludes thermally activated diffusion processes which might possibly contribute
to increased surface graphitization. However, the most important interactions occur on the
sub-picosecond scale and are fully described.

Figure 13 indicates the coordination of the 40 eV film as a function of depth, showing the
top layers of the film (z ∼ 17) to be sp and sp2 bonded, in excellent agreement with electron
energy loss measurements [58] of 35 eV deposited films which find a 100% π -bonded surface
layer with thickness 4 ± 2 Å. Bulk properties of the film are determined for z-values between
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Figure 13. Coordination fractions as a function of depth (z) for the film grown with 40 eV atoms.
The solid curve indicates the analytic fit used to identify the bulk region, and the original height of
the substrate corresponds to z = 0. The coordination cutoff is 1.85 Å.

3 and 11 Å, and indicate the structure is1 ta-C, with an sp3 fraction of 61%, a density of
3.17 g cm−3 and a biaxial compressive stress of 4.8 GPa. While experiments at this density
typically find slightly higher sp3 fractions (70–80%) and stresses (8–10 GPa), this simulation
represents an enormous improvement over the Tersoff and Brenner calculations [42,43] where
sp3 fractions were less than 30% and stresses were not calculated.

Figure 14 shows a ball-and-stick model of the 40 eV film, with the abundance of black
atoms denoting sp3 bonding reflecting the tetrahedral character of the film. Grey atoms indicate
sp-bonded atoms which are present only at the surface, forming weakly bonded structures such
as loops and chains. At the substrate interface the film does not nucleate uniformly, and a
roughness ≈3 Å in width is evident due to small amounts of substrate damage and epitaxial
growth. The minor degree of epitaxy can also be inferred from the high sp3 fraction at z = 0
in figure 13. In the original surface the atoms in this layer are purely sp2 (being part of the
2 × 1 reconstruction), but as the film grows a large fraction of these atoms convert to an sp3

configuration.
Figure 15 shows the reduced density function for the bulk region of the film. The second-

neighbour distances agree well with neutron diffraction data [59], while the first-neighbour
peak is somewhat narrower, in part due to the relatively small number of distances available for
computing the G(r). This difference is trivial compared with the spurious spikes in the RDF
of the Tersoff, modified Brenner and trunctated OTB simulations in figure 2. In the case of
EDIP there is no spurious peak because the DFT parametrization of the coordination function
provides a correct description of the bond formation and breaking. Other problems related to
the RDF were found by Kaukonen and Niemenen whose Tersoff films contained sites with
so-called sp2+x and sp1+x bonding. These classifications reflect uncertainty in the interaction
cutoff used to define coordination, but in the EDIP calculations there is no such ambiguity as
the G(r) drops to the zero-density line −4πρr close to the coordination cutoff of 1.85 Å.

Figure 16 compares the energy dependence of the EDIP films with the experimental
data of McKenzie et al [1]. The EDIP properties refer to the bulk region of each film as
identified with an analytic fitting function as in figure 13, while the experimental sp3 fractions
were determined using plasmon interpolation [9]. Experimental densities were scaled via the
3.1 g cm−3 reference point in [1]. With increasing energy the EDIP films are seen to transform
from low-density, tensile stressed a-C at 1 eV, to high-density, compressively stressed ta-C at
40–100 eV. This dependence on deposition energy is very well known from experiments, and

1 Following [9] which defines ta-C as amorphous carbon with an sp3 bonding fraction exceeding 50%.
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Figure 14. Structure of ta-C thin film deposited with 40 eV atoms. Coordination determined
by counting neighbours within 1.85 Å, with grey, white and black circles denoting atoms with
two, three and four neighbours respectively. The horizontal bar indicates the initial height of the
substrate (z = 0 in figure 13).
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Figure 15. Reduced density function G(r) for the bulk region of the 40 eV film, compared with
experimental neutron diffraction of Gilkes et al [59] and a 3.2 g cm−3 liquid quench.

is reproduced here by simulation for the first time. For each of the films the RDF is physical
and reasonable, showing none of the sharp spikes seen in the Tersoff and modified Brenner
depositions. No atoms with spurious fivefold coordination were present as in the modified
Brenner films [43]. Consistent with experiment, all three quantities in figure 16 share the same
systematic variation with energy, in contrast to the simulations of [42] where the maximum
sp3 fraction of 28.5% occurred at 10 eV, while the maximum density was achieved between
40 and 100 eV.

It is useful to consider the minimum energy required to form ta-C, as this provides
insight into the physical processes responsible for the tetrahedral bonding. Experimental
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Figure 16. Energy dependence of EDIP-deposited films compared with experimental data of
McKenzie et al [1]. Error bars for the density and sp3 fraction lie within the solid circles for both
data sets, except for the EDIP 100 eV film where the uncertainty is ≈5%.

determination of this energy is difficult, with a comparison of nine experiments [9] showing a
transition from sp2-rich to sp3-rich material anywhere between 7 and 30 eV. Defining the precise
transition point is further complicated by finite energy linewidths [60] and plasma screening
which reduces the energy of the beam relative to the bias voltage. No such ambiguities
are present in the EDIP simulations where the ion energies are precisely known, and the
simulations shown the threshold energy is less than 10 eV, as at this energy the film grows
with 54% sp3 bonding, and is compressively stressed and dense. The significance of this
result lies in the growth mode at 10 eV, which is entirely surface based and does not involve
so-called subplantation events as proposed by Robertson [6] and Lifshitz [8]. The mechanism
of subplantation proposes that incident species undergo shallow implantation into the sub-
surface of the film, leading to densification and sp3 promotion. This model has emerged over
the past decade as the default explanation for tetrahedral bonding and compressive stress in
ta-C, in part due to the absence of a potential like EDIP which can probe the deposition process.
Since the subplantation model has become part of the framework for interpreting ta-C and a-C
experiments, it is appropriate to consider the growth process in more detail.

The nature of the impacts in the four films is analysed in table 4 using the average surface
algorithm of [42] with an exclusion radius of 0.77 Å2. In agreement with simulation [41, 42]
and experiment [61], subplantation processes commence around 40 eV, indicating that the

2 While [42] used a cylindrical radius of 1.60 Å to identify the surface, 0.77 Å was much more appropriate for the
EDIP films.
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Figure 17. Coordination fractions for the 10 eV film. The black bars describe newly deposited
atoms, while grey bars denote atoms in the bulk region of the final film.

Table 4. Impact analysis for the 500 atoms deposited at each energy. The classifications of
subplantation, surface and scattering follow [42].

Energy (eV) Subplantation Surface Scattered

1 0 414 86
10 0 485 15
40 12 474 14

100 174 320 6

sp3-rich 10 eV film grew without subplantation. At the highest energy of 100 eV, the energy
required to implant into the film leads to thermal spikes whose annealing effects are evident
in figure 16 where the diamond-like properties no longer increase. These subplantation events
generate a damage track which leads to a low-density, sp/sp2 region ≈1 nm thick, consistent
with experiment [58].

Additional analysis of the 10 eV film confirms the surface-based nature of the growth
process at this energy. Figure 17 compares the coordination of newly deposited atoms
with those in the bulk once deposition has ceased. If subplantation processes were the
origin of diamond-like formation, the grey and black bars would have equal heights for each
coordination, a situation which is clearly not the case. Instead, newly deposited atoms locate in
surface sites, indicating that the action of deposition buries pre-existing surface, in the process
converting the sp/sp2-rich layer into the predominantly sp3 bulk. It is therefore evident that ta-
C formation is not due to incident species locating themselves underneath pre-existing surface
as per subplantation, but rather occurs when existing surface is ‘buried’.

The conclusion that the sp3 bonding is due to a burial process bears considerable
resemblance to a ‘energetic burial’ model developed from the two-dimensional SW3
simulations of carbon film growth [21]. In these simulations films were deposited with energies
of 1–100 eV, and excellent agreement with experiment was obtained, with the compressive
stress showing the same variation with ion energy as in figure 16. However, no subplantation
was observed due to the topology of two dimensions which is much less open than the
loosely packed tetrahedral and trigonal structures found in three-dimensional carbon. This
observation that compressive stress could be generated without subplantation was an important
and unexpected result at the time.

The topological properties of the two-dimensional material were further exploited via a
microscopic definition of surface and bulk which is not possible in three dimensions. This
distinction enabled precise determination of the growth mode, and showed that the energetic
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Figure 18. Lateral stress as a function of average bondlength in two-dimensional simulations of
deposition using a 50 eV atomic beam [21]. Stress in surface and bulk regions was computed at
ten stages during the growth of the film.

incident species converted surface atoms under tensile stress into bulk atoms under compressive
stress. The effect of this process of ‘energetic burial’ is illustrated in figure 18 which shows the
stress of the bulk and surface components of a two-dimensional 50 eV film at various stages
during its deposition. The surface region of the film is seen to always have long bond-lengths
and tensile stress, while the bulk region of the film is seen to always have short bond-lengths
and compressive stress. Since all bulk atoms must at some earlier stage be located on the
surface, it is only by energetic burial without subplantation that compressive stress is created.

The energetic burial model is of direct application to the three-dimensional EDIP
simulations, as in this case new atoms locate as sp/sp2 atoms on the surface, and only upon burial
are converted to sp3 sites. Generalization of the two-dimensional model to three-dimensional
carbon therefore indicates that the pressure pulse produced by energetic impact is sufficient to
overcome the non-bondedπ -repulsion between sp2 units. As seen in figure 5, DFT calculations
show that the activation barrier for graphite–diamond interconversion is 0.33 eV/atom [51], and
thus a 10 eV impact is easily capable of providing the energy necessary for the transformation.
This process is reminiscent of the sp3 promotion mechanism in the atomic peening model [10],
but bears little resemblance to the thermal spike model [9] as spikes are insignificant in 10 eV
impacts. With regard to the other models, further simulations are required to answer the
important question of whether the sp3 fraction and compressive stress are related linearly as
suggested by Robertson [6] or have a non-linear relationship consistent with the compressive
stress model [11].

Before concluding our discussion of thin-film growth, it is instructive to compare the
as-deposited films with the EDIP liquid-quench data considered earlier. In figure 15 the pair
distribution function of ta-C prepared by liquid quench is compared with that of bulk ta-C
deposited with a 40 eV atomic beam. The structures in the two simulations have very similar
distributions of distances despite the different preparation conditions. In particular, although
both structures have essentially the same density (3.2 g cm−3), the density in the quench is an
input parameter whereas it is an output quantity in the deposition.

The close agreement between liquid quenching and deposited amorphous carbons extends
to the sp3 fraction, whose dependence on density is shown in figure 19. Included in this
figure are additional data for films deposited with energies of 2 and 3 eV [62], and liquid-
quench simulations at 2.3 g cm−3. Across a broad density range, the sp3 fractions of the
quenched structures share essentially the same linear dependence as the films deposited at
varying energy, with an average difference of just 3%. The EDIP simulations are consistent
with experiments [2] which show that the sp3 fraction is a single-valued function of the density
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as seen in figure 19. The simplest analysis of this experimental data yielded a straight line, but
the uncertainties were too great to eliminate the possibility of non-linear relationship between
the sp3 fraction and the density as suggested in [60]. However, with the precision afforded by
the multiple liquid-quench simulations the linear relationship is affirmed.

5. Discussion

The case studies of molten carbon, liquid quenching and thin-film deposition provide a
comprehensive demonstration of the utility of the EDIP approach. Using the enormous number
of references to the Tersoff potential as a guide, it can therefore be anticipated that many other
applications in pure carbon systems will follow. In the case of ta-C the effect of temperature on
deposition, and Monte Carlo simulations of surface relaxation are just two important problems
which are certain to be addressed in an useful manner by EDIP. Perhaps the most surprising
aspect of EDIP is the degree of transferability relative to its computational cost. Compared
with OTB (at least an order of magnitude more expensive), EDIP provides a vastly better
description of disordered carbon, while the traditional empirical carbon potentials of Tersoff,
Brenner and SW provide such a poor description of ta-C as to provide very little insight at all.

Given the success of EDIP it is appropriate to consider in what direction its transferability
might be extended. In the direction of multi-elemental systems, the most obvious generalization
is to a silicon–carbon potential where a number of candidates already exist [63–65], but none
have the predictive power of EDIP for the carbon phase. Preliminary investigations into a
hybrid SiC potential combining silicon and carbon EDIP via a scaling of the spatial metric
show that the elastic constants of the zincblende structure are well described, but the description
of the simple cubic phase is inferior to that of the Tersoff SiC potential [63]. This description
may well be improved if the silicon EDIP is reformulated (and refitted) using the methodology
shown here to be so successful for carbon.

With regards transferability in the pure carbon phase, it would be preferable to reproduce
the density of graphite exactly, particularly if this increased the sp3 fraction at high densities.
Stretching the DFT activation barrier to bring the graphitic density in line with experiment
might prove useful in this regard. In terms of the on-site formulation it is straightforward
to define an average coordination in the manner of Abell [47] for pair interactions, and this
approach may be of benefit in situations where mixed-coordination bonding is of particular
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interest. Liquid-quench simulations using such an average pair combination exhibited a small
spike in the RDF, which is likely due to different coordinations (and thus cutoffs) of the pair
and triple potentials. In the on-site formalism however, the pair and triple terms are always
robustly defined, and can be mapped to an equivalent SW potential. Without this important
property unphysical structures can arise in disordered systems, such as were seen during the
development of the analytic BOP [66]. Robustness is therefore essential for modelling the
amorphous and liquid states, and together with its good transferability EDIP represents a new
direction for carbon empirical potentials.

In summary, this paper has shown how EDIP is parametrized almost entirely deterministi-
cally by applying ab initio data in high-symmetry configurations. The benefit of this approach
is seen in simulations of the liquid and amorphous state where excellent agreement with CPMD
data is found, the statistical variability of quenching is quantified, and no unphysical distances
are observed as present in Tersoff, Brenner and truncated OTB simulations. In the first sim-
ulations of ta-C thin-film deposition the unique combination of efficiency and transferability
is demonstrated. Densities, sp3 fractions and stresses correlate with the incident energy as
observed experimentally, and again no unphysical distances or coordinations are present. The
widely accepted subplantation model is shown to be inconsistent with the simulations, and a
new model of ta-C film growth is proposed in which energetic burial leads to the simultaneous
processes of sp3 promotion, densification, stress generation and surface growth.
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[9] Hofsäss H, Feldermann H, Merk R, Sebastian M and Ronning C 1998 Appl. Phys. A 66 153

[10] Koponen I, Hakovirta M and Lappalainen R 1995 J. Appl. Phys. 78 5837
[11] McKenzie D R 1996 Rep. Prog. Phys. 59 1611
[12] Ferrari A C, Kleinsorge B, Morrison N A, Hart A, Stolojan V and Robertson J 1999 J. Appl. Phys. 85 7191
[13] Friedmann T A, Sullivan J P, Knapp J A, Tallant D R, Follstaedt D M, Medlin D L and Mirkarimi P B 1997

Appl. Phys. Lett. 71 3820
[14] Car R and Parrinello M 1985 Phys. Rev. Lett. 55 2471
[15] Sankey O F and Niklewski D J 1989 Phys. Rev. B 40 3979
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